Extended Odd Fréchet-G Family of Distributions
نویسندگان
چکیده
منابع مشابه
The behavior of the reliability functions and stochastic orders in family of the Kumaraswamy-G distributions
The Kumaraswamy distribution is a two-parameter distribution on the interval (0,1) that is very similar to beta distribution. This distribution is applicable to many natural phenomena whose outcomes have lower and upper bounds, such as the proportion of people from society who consume certain products in a given interval. In this paper, we introduce the family of Kumaraswamy-G distribution, an...
متن کاملAn extended-G geometric family
We introduce and study the extended-G geometric family of distributions, which contains as special models some important distributions such as the XTG (Xie et al. 2002) geometric, Weibull geometric, Chen (Chen 2000) geometric, Gompertz geometric, among others. This family not only includes distributions with bathtub and unimodal failure rate functions but provides a broader class of monotone fa...
متن کاملThe Beta Odd Log-logistic Generalized Family of Distributions
We introduce a new family of continuous models called the beta odd log-logistic generalized family of distributions. We study some of its mathematical properties. Its density function can be symmetrical, left-skewed, right-skewed, reversed-J, unimodal and bimodal shaped, and has constant, increasing, decreasing, upside-down bathtub and J-shaped hazard rates. Five special models are discussed. W...
متن کاملThe odd generalized exponential family of distributions with applications
We propose a new family of continuous distributions called the odd generalized exponential family, whose hazard rate could be increasing, decreasing, J, reversed-J, bathtub and upside-down bathtub. It includes as a special case the widely known exponentiated-Weibull distribution. We present and discuss three special models in the family. Its density function can be expressed as a mixture of exp...
متن کاملFréchet Distance Revisited and Extended
Given two simplicial complexes in IR, and start and end vertices in each complex, we show how to compute curves (in each complex) between these vertices, such that the Fréchet distance between these curves is minimized. As a polygonal curve is a complex, this generalizes the regular notion of weak Fréchet distance between curves. We also generalize the algorithm to handle an input of k simplici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Probability and Statistics
سال: 2018
ISSN: 1687-952X,1687-9538
DOI: 10.1155/2018/2931326